The numerical solution of equality constrained quadratic programming problems

Abstract
This paper proves that a large class of iterative schemes can be used to solve a certain constrained minimization problem. The constrained minimization problem considered involves the minimization of a quadratic functional subject to linear equality constraints. Among this class of convergent iterative schemes are generalizations of the relaxed Jacobi, Gauss-Seidel, and symmetric Gauss-Seidel schemes.

This publication has 9 references indexed in Scilit: