The presence of an abasic site in duplex DNA lowers the thermodynamic stability, as monitored by the optical melting temperature, and decreases the rate of imino proton exchange with water, by about an order of magnitude, as monitored by direct measurement of both the exchange lifetimes and the imino proton T1S. The exchange lifetimes of the imino protons with water as a function of base catalyst concentration were analyzed to determine the origin of the effect of the abasic site on imino exchange lifetimes. Analysis of the results showed that the helix opening rate is not significantly changed by the presence of an abasic site. The differences in exchange lifetimes are attributed to a faster helix closing rate in the presence of an abasic site. The faster rate of helix closing may be an important contribution to the stability of abasic sites in duplex DNA to base-catalyzed elimination reaction. It is noted that duplex DNAs containing analogues of the aldehydic abasic site apparently do not exhibit these exchange lifetime effects.