Parameters for Integrating Periodic Functions of Several Variables
Open Access
- 1 July 1983
- journal article
- Published by JSTOR in Mathematics of Computation
- Vol. 41 (163) , 115-129
- https://doi.org/10.2307/2007770
Abstract
A number-theoretical method for numerical integration of periodic functions of several variables was developed some years ago. This paper presents lists of numerical parameters to be used in implementing that method. The parameters define quadrature formulas for functions of 2, 3, ..., 8 variables; error bounds for those formulas are also tabulated. The derivation of the parameters and error bounds is described.Keywords
This publication has 8 references indexed in Scilit:
- Existence of good lattice points in the sense of HlawkaMonatshefte für Mathematik, 1978
- Quasi-Monte Carlo methods and pseudo-random numbersBulletin of the American Mathematical Society, 1978
- Good lattice points modulo composite numbersMonatshefte für Mathematik, 1974
- Optimal Parameters for Multidimensional IntegrationSIAM Journal on Numerical Analysis, 1973
- Recherche et Utilisation des “Bons Treillis.” Programmation et Résultats NumériquesPublished by Elsevier ,1972
- Experiments on Optimal Coefficients**This work was supported in part by NASA Research Grant NSG-398 to the Computer Science Center, University of Maryland.Published by Elsevier ,1972
- Numerical Evaluation of Multiple IntegralsSIAM Review, 1970
- Good lattice points, discrepancy, and numerical integrationAnnali di Matematica Pura ed Applicata (1923 -), 1966