Abstract
Boron neutron capture therapy (BNCT) represents a promising modality for a relatively selective radiation dose delivery to the tumor tissue. The key to effective BNCT of tumors such as glioblastoma multiforme (GBM) is the homogeneous preferential accumulation of10B in the tumor, including the infiltrating GBM cells, as compared to that in the vital structures of the normal brain. Provided that sufficiently high tumor10B concentration (∼109 boron-10 atoms/cell) and an adequate thermal neutron fluence (∼ 109 neutrons/cm2) are achieved, it is the ratio of the10B concentration in tumor cells to that in the normal brain cells and the blood that will largely determine the therapeutic gain of BNCT.

This publication has 38 references indexed in Scilit: