Geometry of Batalin-Vilkovisky quantization
Preprint
- 26 May 1992
Abstract
The present paper is devoted to the study of geometry of Batalin-Vilkovisky quantization procedure. The main mathematical objects under consideration are P-manifolds and SP-manifolds (supermanifolds provided with an odd symplectic structure and, in the case of SP-manifolds, with a volume element). The Batalin-Vilkovisky procedure leads to consideration of integrals of the superharmonic functions over Lagrangian submanifolds. The choice of Lagrangian submanifold can be interpreted as a choice of gauge condition; Batalin and Vilkovisky proved that in some sense their procedure is gauge independent. We prove much more general theorem of the same kind. This theorem leads to a conjecture that one can modify the quantization procedure in such a way as to avoid the use of the notion of Lagrangian submanifold. In the next paper we will show that this is really so at least in the semiclassical approximation. Namely the physical quantities can be expressed as integrals over some set of critical points of solution S to the master equation with the integrand expressed in terms of Reidemeister torsion. This leads to a simplification of quantization procedure and to the possibility to get rigorous results also in the infinite-dimensional case. The present paper contains also a compete classification of P-manifolds and SP-manifolds. The classification is interesting by itself, but in this paper it plays also a role of an important tool in the proof of other results.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: