Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 Å resolution: Proof for a single Mg2+‐binding site
- 1 December 1993
- journal article
- research article
- Published by Wiley in Proteins-Structure Function and Bioinformatics
- Vol. 17 (4) , 337-346
- https://doi.org/10.1002/prot.340170402
Abstract
To obtain more precise insight into the Mg2+-binding site essential for RNase HI catalytic activity, we have determined the crystal structure of E. coli RNase HI in complex with Mg2+. The analyzed cocrystal, which is not isomorphous with the Mg2+-free crystal previously refined at 1.48 Å resolution, was grown at a high MgSO4 concentration more than 100 mM so that even weakly bound Mg2+ sites could be identified. The structure was solved by the molecular replacement method, using the Mg2+-free crystal structure as a search model, and was refined to give a final R-value of 0.190 for intensity data from 10 to 2.8 Å, using the XPLOR and PROLSQ programs. The backbone structures are in their entirety very similar to each other between the Mg2+-bound and the metal-free crystals, except for minor regions in the enzyme interface with the DNA/RNA hybrid. The active center clearly revealed a single Mg2+ atom located at a position almost identical to that previously found by the soaking method. Although the two metal-ion mechanism had been suggested by another group (Yang, W., Hendrickson, W.A., Crouch, R.J., Satow, Y. Science 249:1398-1405, 1990) and partially supported by the crystallographic study of inactive HIV-1 RT RNase H fragment (Davies, J.F., II, Hostomska, Z., Hostomsky, Z., Jordan, S.R., Matthews, D. Science 252:88-95, 1991), the present result excludes the possibility that RNase HI requires two metal-binding sites for activity. In contrast to the features in the metal-free enzyme, the side chains of Asn-44 and Glu-48 are found to form coordinate bonds with Mg2+ in the metal-bound crystal.Keywords
This publication has 34 references indexed in Scilit:
- Crystal Structure of Ribonuclease H from Thermus thermophilus HB8 Refined at 2·8 Å ResolutionJournal of Molecular Biology, 1993
- X-ray structure of the DNase I-d(GGTATACC)2 complex at 2·3Å resolutionJournal of Molecular Biology, 1992
- On the catalytic mechanism of EcoRI and EcoRV A detailed proposal based on biochemical results, structural data and molecular modellingFEBS Letters, 1992
- Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolutionJournal of Molecular Biology, 1992
- Binding of metal ions toE. coli RNase HI observed by1H−15N heteronuclear 2D NMRJournal of Biomolecular NMR, 1991
- The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallographyJournal of Applied Crystallography, 1989
- Multiple mechanisms for initiation of ColE1 DNA replication: DNA synthesis in the presence and absence of ribonuclease HCell, 1987
- A group refinement procedure in protein crystallography using Fourier transformsJournal of Applied Crystallography, 1985
- The protein data bank: A computer-based archival file for macromolecular structuresJournal of Molecular Biology, 1977
- A method of positioning a known molecule in an unknown crystal structureActa Crystallographica, 1967