Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo
Open Access
- 24 October 2003
- journal article
- research article
- Published by Oxford University Press (OUP) in Carcinogenesis: Integrative Cancer Research
- Vol. 25 (2) , 289-297
- https://doi.org/10.1093/carcin/bgg191
Abstract
Studies of estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA can generate the critical mutations initiating breast, prostate and other cancers. The endogenous estrogens estrone (E 1 ) and estradiol (E 2 ) are oxidized to catechol estrogens (CE), 2- and 4-hydroxylated estrogens, which can be further oxidized to CE quinones. To determine possible DNA adducts of E 1 (E 2 )-3,4-quinones [E 1 (E 2 )-3,4-Q], we reported previously that the reaction of E 1 (E 2 )-3,4-Q with dG produces the depurinating adduct 4-hydroxyE 1 (E 2 )-1-N7Gua [4-OHE 1 (E 2 )-1-N7Gua] by 1,4-Michael addition (Stack et al ., Chem. Res. Toxicol ., 1996, 9, 851). We report here that reaction of E 1 (E 2 )-3,4-Q with Ade results in the formation of 4-OHE 1 (E 2 )-1-N3Ade by 1,4-Michael addition. The N7Gua and N3Ade depurinating adducts formed both in vitro and in rat mammary gland in vivo were analyzed by HPLC with electrochemical detection and, for some samples, by LC/MS/MS. When E 2 -3,4-Q was reacted with DNA in vitro , the depurinating adducts 4-OHE 1 (E 2 )-1-N3Ade and 4-OHE 1 (E 2 )-1-N7Gua, which are rapidly lost from DNA by cleavage of the glycosyl bond, were formed (>99% of the total adducts), as well as traces of stable adducts, which remain in DNA unless removed by repair. Similar results were obtained when 4-OHE 2 was oxidized by horseradish peroxidase, lactoperoxidase, tyrosinase or phenobarbital-induced rat liver microsomes in the presence of DNA. When 4-OHE 2 or E 2 -3,4-Q was injected into the mammary glands of female ACI rats in vivo and the mammary tissue was excised 1 h later, the depurinating adducts 4-OHE 2 -1-N3Ade and 4-OHE 2 -1-N7Gua constituted >99% of the total adducts formed. In addition, 4-OHE 2 conjugates formed by reaction of E 2 -3,4-Q with glutathione were also detected. These results demonstrate that the 4-CE are metabolized to CE-3,4-Q, which react with DNA to form primarily depurinating adducts. These adducts can generate the critical mutations that initiate cancer (Chakravarti et al ., Oncogene , 2001, 20, 7945; Chakravarti et al ., Proc. Am. Assoc. Cancer Res. , 2003, 44, 180).Keywords
This publication has 0 references indexed in Scilit: