Bidirectional long‐term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation
Top Cited Papers
Open Access
- 16 August 2008
- journal article
- research article
- Published by Wiley in The Journal of Physiology
- Vol. 586 (16) , 3927-3947
- https://doi.org/10.1113/jphysiol.2008.152793
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising tool to induce plastic changes that are thought in some cases to reflect N‐methyl‐d‐aspartate‐sensitive changes in synaptic efficacy. As in animal experiments, there is some evidence that the sign of rTMS‐induced plasticity depends on the prior history of cortical activity, conforming to the Bienenstock–Cooper–Munro (BCM) theory. However, experiments exploring these plastic changes have only examined priming‐induced effects on a limited number of rTMS protocols, often using designs in which the priming alone had a larger effect than the principle conditioning protocol. The aim of this study was to introduce a new rTMS protocol that gives a broad range of after‐effects from suppression to facilitation and then test how each of these is affected by a priming protocol that on its own has no effect on motor cortical excitability, as indexed by motor‐evoked potential (MEP). Repeated trains of four monophasic TMS pulses (quadripulse stimulation: QPS) separated by interstimulus intervals of 1.5–1250 ms produced a range of after‐effects that were compatible with changes in synaptic plasticity. Thus, QPS at short intervals facilitated MEPs for more than 75 min, whereas QPS at long intervals suppressed MEPs for more than 75 min. Paired‐pulse TMS experiments exploring intracortical inhibition and facilitation after QPS revealed effects on excitatory but not inhibitory circuits of the primary motor cortex. Finally, the effect of priming protocols on QPS‐induced plasticity was consistent with a BCM‐like model of priming that shifts the crossover point at which synaptic plasticity reverses from depression to potentiation. The broad range of after‐effects produced by the new rTMS protocol opens up new possibilities for detailed examination of theories of metaplasticity in humans.This publication has 60 references indexed in Scilit:
- Metaplasticity: tuning synapses and networks for plasticityNature Reviews Neuroscience, 2008
- Transcranial Magnetic Stimulation: A PrimerPublished by Elsevier ,2007
- Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulationEuropean Journal of Neuroscience, 2007
- Origin of Facilitation of Motor-Evoked Potentials After Paired Magnetic Stimulation: Direct Recording of Epidural Activity in Conscious HumansJournal of Neurophysiology, 2006
- Hippocampal Synaptic Metaplasticity Requires Inhibitory Autophosphorylation of Ca2+/Calmodulin-Dependent Kinase IIJournal of Neuroscience, 2005
- Learning Modifies Subsequent Induction of Long-Term Potentiation-Like and Long-Term Depression-Like Plasticity in Human Motor CortexJournal of Neuroscience, 2004
- Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortexElectroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 1996
- Metaplasticity: the plasticity of synaptic plasticityTrends in Neurosciences, 1996
- Responses to rapid-rate transcranial magnetic stimulation of the human motor cortexBrain, 1994
- The Influence of Prior Synaptic Activity on the Induction of Long-Term PotentiationScience, 1992