Condensation ofNbosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogy
- 20 January 2000
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review A
- Vol. 61 (2) , 023609
- https://doi.org/10.1103/physreva.61.023609
Abstract
A nonequilibrium approach to the dynamics and statistics of the condensate of an ideal N-atom Bose gas cooling via interaction with a thermal reservoir using the canonical ensemble is developed. We derive simple analytical expressions for the canonical partition function and equilibrium distribution of the number of atoms in the ground state of a trap under different approximations, and compare them with exact numerical results. The N-particle constraint associated with the canonical ensemble is usually a burden. In the words of Kittel, “in the investigation of the Bose-Einstein…laws it is very inconvenient to impose the restriction that the number of particles in the subsystem shall be held constant.” But in the present approach, based on the analogy between a second-order phase transition and laser threshold behavior, the N-particle constraint makes the problem easier. We emphasize that the present work provides another example of a case in which equilibrium (detailed balance) solutions to nonequilibrium equations of motion provide a useful supplementary approach to conventional statistical mechanics. We also discuss some dynamical and mesoscopic aspects of Bose-Einstein condensation. The conclusion is that the present analytical (but approximate) results, based on a nonequilibrium approach, are in excellent agreement with exact (but numerical) results. The present analysis has much in common with the quantum theory of the laser.Keywords
This publication has 64 references indexed in Scilit:
- Ground-State Properties of Magnetically Trapped Bose-Condensed Rubidium GasPhysical Review Letters, 1996
- Disorder and the Superfluid Transition in LiquidPhysical Review Letters, 1988
- Superfluidity in a Dilute Bose GasPhysical Review Letters, 1983
- The ideal Bose-Einstein gas, revisitedPhysics Reports, 1977
- Theory of Many-Boson Systems: Pair TheoryPhysical Review B, 1959
- Distance Correlations and Bose-Einstein CondensationThe Journal of Chemical Physics, 1943
- The State of Liquid Helium near Absolute Zero.The Journal of Physical Chemistry, 1939
- On the Bose-Einstein CondensationPhysical Review B, 1938
- On the theory of condensationPhysica, 1938
- Plancks Gesetz und LichtquantenhypotheseThe European Physical Journal A, 1924