A Search for High‐Velocity Be Stars

Abstract
We present an analysis of the kinematics of Be stars based upon Hipparcos proper motions and published radial velocities. We find approximately 23 of the 344 stars in our sample have peculiar space motions greater than 40 km s-1 and up to 102 km s-1. We argue that these high-velocity stars are the result of either a supernova that disrupted a binary or ejection by close encounters of binaries in young clusters. Be stars spun up by binary mass transfer will appear as high-velocity objects if there was significant mass loss during the supernova explosion of the initially more massive star, but the generally moderate peculiar velocities of Be X-ray binaries indicate that the progenitors lose most of their mass prior to the supernova (in accordance with model predictions). Binary formation models for Be stars predict that most systems bypass the supernova stage (and do not receive runaway velocities) to create ultimately Be + white dwarf binaries. The fraction of Be stars spun up by binary mass transfer remains unknown, since the post-mass transfer companions are difficult to detect.

This publication has 22 references indexed in Scilit: