Abstract
The instabilities of convection columns (also called thermal Rossby waves) in a cylindrical annulus rotating about its axis and heated from the outside are investigated as a function of the Prandtl number P and the Coriolis parameter η*. When this latter parameter is sufficiently large, it is found that the primary solution observed at the onset of convection becomes unstable when the Rayleigh number exceeds its critical value by a relatively small amount. Transitions occur to columnar convection which is non-symmetric with respect to the mid-plane of the small-gap annular layer. Further transitions introduce convection flows that vacillate in time or tend to split the row of columns into an inner and an outer row of separately propagating waves. Of special interest is the regime of non-symmetric convection, which exhibits decreasing Nusselt number with increasing Rayleigh number, and the indication of a period doubling sequence associated with vacillating convection.

This publication has 4 references indexed in Scilit: