In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease
- 28 September 2004
- journal article
- Published by Wolters Kluwer Health in Neurology
- Vol. 63 (6) , 989-995
- https://doi.org/10.1212/01.wnl.0000138434.68093.67
Abstract
Objective: To investigate the regional pattern of white matter and cerebellar changes, as well as subcortical and cortical changes, in Huntington disease (HD) using morphometric analyses of structural MRI. Methods: Fifteen individuals with HD and 22 controls were studied; groups were similar in age and education. Primary analyses defined six subcortical regions, the gray and white matter of primary cortical lobes and cerebellum, and abnormal signal in the cerebral white matter. Results: As expected, basal ganglia and cerebral cortical gray matter volumes were significantly smaller in HD. The HD group also demonstrated significant cerebral white matter loss and an increase in the amount of abnormal signal in the white matter; occipital white matter appeared more affected than other cerebral white matter regions. Cortical gray and white matter measures were significantly related to caudate volume. Cerebellar gray and white matter volumes were both smaller in HD. Conclusions: The cerebellum and the integrity of cerebral white matter may play a more significant role in the symptomatology of HD than previously thought. Furthermore, changes in cortical gray and cerebral white matter were related to caudate atrophy, supporting a similar mechanism of degeneration.Keywords
This publication has 32 references indexed in Scilit:
- Regional Specificity of Brain Atrophy in Huntington's DiseaseExperimental Neurology, 1998
- Huntingtin localization in brains of normal and Huntington's disease patientsAnnals of Neurology, 1997
- Evidence of cortical metabolic dysfunction in early Huntington's disease by single‐photon‐emission computed tomographyMovement Disorders, 1996
- Unified Huntington's disease rating scale: Reliability and consistencyMovement Disorders, 1996
- CAG expansion affects the expression of mutant huntingtin in the Huntington's disease brainNeuron, 1995
- The cortical neuritic pathology of Huntington's diseaseNeuropathology and Applied Neurobiology, 1995
- A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomesCell, 1993
- Reduced regional cerebral blood flow in Huntington's disease studied by SPECT.Journal of Neurology, Neurosurgery & Psychiatry, 1992
- A quantitative investigation of the substantia nigra in Huntington's diseaseAnnals of Neurology, 1989
- PET scan investigations of Huntington's disease: Cerebral metabolic correlates of neurological features and functional declineAnnals of Neurology, 1986