Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise
- 1 January 2005
- journal article
- clinical trial
- Published by American Physiological Society in Journal of Applied Physiology
- Vol. 98 (1) , 250-256
- https://doi.org/10.1152/japplphysiol.00897.2004
Abstract
This study compared the effects of inspiring either a hyperoxic (60% O2) or normoxic gas (21% O2) while cycling at 70% peak O2uptake on 1) the ATP derived from substrate phosphorylation during the initial minute of exercise, as estimated from phosphocreatine degradation and lactate accumulation, and 2) the reliance on carbohydrate utilization and oxidation during steady-state cycling, as estimated from net muscle glycogen use and the activity of pyruvate dehydrogenase (PDH) in the active form (PDHa), respectively. We hypothesized that 60% O2would decrease substrate phosphorylation at the onset of exercise and that it would not affect steady-state exercise PDH activity, and therefore muscle carbohydrate oxidation would be unaltered. Ten active male subjects cycled for 15 min on two occasions while inspiring 21% or 60% O2, balance N2. Blood was obtained throughout and skeletal muscle biopsies were sampled at rest and 1 and 15 min of exercise in each trial. The ATP derived from substrate-level phosphorylation during the initial minute of exercise was unaffected by hyperoxia (21%: 52.2 ± 11.1; 60%: 54.0 ± 9.5 mmol ATP/kg dry wt). Net glycogen breakdown during 15 min of cycling was reduced during the 60% O2trial vs. 21% O2(192.7 ± 25.3 vs. 138.6 ± 16.8 mmol glycosyl units/kg dry wt). Hyperoxia had no effect on PDHa, because it was similar to the 21% O2trial at rest and during exercise (21%: 2.20 ± 0.26; 60%: 2.25 ± 0.30 mmol·kg wet wt−1·min−1). Blood lactate was lower (6.4 ± 1.0 vs. 8.9 ± 1.0 mM) at 15 min of exercise and net muscle lactate accumulation was reduced from 1 to 15 min of exercise in the 60% O2trial compared with 21% (8.6 ± 5.1 vs. 27.3 ± 5.8 mmol/kg dry wt). We concluded that O2availability did not limit oxidative phosphorylation in the initial minute of the normoxic trial, because substrate phosphorylation was unaffected by hyperoxia. Muscle glycogenolysis was reduced by hyperoxia during steady-state exercise, but carbohydrate oxidation (PDHa) was unaffected. This closer match between pyruvate production and oxidation during hyperoxia resulted in decreased muscle and blood lactate accumulation. The mechanism responsible for the decreased muscle glycogenolysis during hyperoxia in the present study is not clear.Keywords
This publication has 45 references indexed in Scilit:
- The role of oxygen in determining phosphocreatine onset kinetics in exercising humansThe Journal of Physiology, 2004
- Muscle oxygen uptake in humans at onset of and during intense exerciseActa Physiologica Scandinavica, 2000
- Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exerciseActa Physiologica Scandinavica, 2000
- Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exerciseActa Physiologica Scandinavica, 1999
- Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscleAnalytical Biochemistry, 1990
- Hyperoxia and human performanceMedicine & Science in Sports & Exercise, 1982
- Lactate content and pH in muscle samples obtained after dynamic exercisePflügers Archiv - European Journal of Physiology, 1976
- Glycogen, Glycolytic Intermediates and High-Energy Phosphates Determined in Biopsy Samples of Musculus Quadriceps Femoris of Man at Rest. Methods and Variance of ValuesScandinavian Journal of Clinical and Laboratory Investigation, 1974
- The effects on the respiration and performance during exercise of adding oxygen to the inspired airThe Journal of Physiology, 1954
- Maximale körperliche Arbeit bei Atmung O2‐reicher Luft1Skandinavisches Archiv Für Physiologie, 1937