Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
Top Cited Papers
- 27 February 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (9) , 3342-3347
- https://doi.org/10.1073/pnas.0611724104
Abstract
Circadian rhythms of cell and organismal physiology are controlled by an autoregulatory transcription-translation feedback loop that regulates the expression of rhythmic genes in a tissue-specific manner. Recent studies have suggested that components of the circadian pacemaker, such as the Clock and Per2 gene products, regulate a wide variety of processes, including obesity, sensitization to cocaine, cancer susceptibility, and morbidity to chemotherapeutic agents. To identify a more complete cohort of genes that are transcriptionally regulated by CLOCK and/or circadian rhythms, we used a DNA array interrogating the mouse protein-encoding transcriptome to measure gene expression in liver and skeletal muscle from WT and Clock mutant mice. In WT tissue, we found that a large percentage of expressed genes were transcription factors that were rhythmic in either muscle or liver, but not in both, suggesting that tissue-specific output of the pacemaker is regulated in part by a transcriptional cascade. In comparing tissues from WT and Clock mutant mice, we found that the Clock mutation affects the expression of many genes that are rhythmic in WT tissue, but also profoundly affects many nonrhythmic genes. In both liver and skeletal muscle, a significant number of CLOCK-regulated genes were associated with the cell cycle and cell proliferation. To determine whether the observed patterns in cell-cycle gene expression in Clock mutants resulted in functional dysregulation, we compared proliferation rates of fibroblasts derived from WT or Clock mutant embryos and found that the Clock mutation significantly inhibits cell growth and proliferation.Keywords
This publication has 79 references indexed in Scilit:
- A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.)Theoretical and Applied Genetics, 2007
- A Clock Shock: Mouse CLOCK Is Not Required for Circadian Oscillator FunctionNeuron, 2006
- Detecting the number of clusters of individuals using the software structure: a simulation studyMolecular Ecology, 2005
- System-level identification of transcriptional circuits underlying mammalian circadian clocksNature Genetics, 2005
- A gene atlas of the mouse and human protein-encoding transcriptomesProceedings of the National Academy of Sciences, 2004
- PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissuesProceedings of the National Academy of Sciences, 2004
- Coordination of circadian timing in mammalsNature, 2002
- A transcription factor response element for gene expression during circadian nightNature, 2002
- The Orphan Nuclear Receptor REV-ERBα Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian OscillatorPublished by Elsevier ,2002
- Extensive and divergent circadian gene expression in liver and heartNature, 2002