Lipofuscin: Mechanisms of formation and increase with age

Abstract
Lipofuscin (age pigment) is a brown-yellow, electron-dense, autofluorescent material that accumulates progressively over time in lysosomes of postmitotic cells, such as neurons and cardiac myocytes. The exact mechanisms behind this accumulation are still unclear. This review outlines the present knowledge of age pigment formation, and considers possible mechanisms responsible for the increase of lipofuscin with age. Numerous studies indicate that the formation of lipofuscin is due to the oxidative alteration of macromolecules by oxygen-derived free radicals generated in reactions catalyzed by redox-active iron of low molecular weight. Two principal explanations for the increase of lipofuscin with age have been suggested. The first one is based on the notion that lipofuscin is not totally eliminated (either by degradation or exocytosis) even at young age, and, thus, accumulates in postmitotic cells as a function of time. Since oxidative reactions are obligatory for life, they would act as age-independent enhancers of lipofuscin accumulation, as well as of many other manifestations of senescence. The second explanation is that the increase of lipofuscin is an effect of aging, caused by an age-related enhancement of autophagocytosis, a decline in intralysosomal degradation, and/or a decrease in exocytosis.