Abstract
For a domain Ω ⊂ ℝ^n embeddings u → \mathrm{exp}(α(|u|/{∥u∥_{1, n}})^{n/{n − 1}}) of \mathrm{H}_{0}^{1,n}(\mathrm{\Omega }) into Orlicz spaces are considered. At the critical exponent α = α_n a loss of compactness reminiscent of the Yamabe problem is encountered; however by a result of Carlesson and Chang, if Ω is a ball the best constant for the above embedding is attained. In dimension n = 2 we identify the “limiting problem” responsible for the lack of compactness at the critical exponent α_2 = 4π in the radially symmetric case and establish the existence of extremal functions also for nonsymmetric domains Ω . Moreover, we establish the existence of two “branches” of critical points of this embedding beyond the critical exponent α_2 = 4π . Résumé: Étant donné un domaine Ω ⊂ ℝ^n , on considère des immersions de \mathrm{H}_{0}^{1,n}(\mathrm{\Omega }) dans des espaces d’Orlicz, du type u → \mathrm{exp}(α(|u|/{∥u∥_{1, n}})^{n/{n − 1}}) . Pour l’exposant critique α = α_n , se produit une perte de compacité. Toutefois, grâce à un résultat de Carleson et Chang, si Ω est une boule, la meilleure constante pour l’immersion est atteinte. Dans le cas n= 2 , le problème limite responsable de la perte de compacité à l’exposant critique α_2 = 4π est identifié dans le cas radialement symétrique. Dans le cas non symétrique, on démontre encore l’existence de fonctions extrêmales. En outre, on montre l’existence de deux branches de points critiques d’immersion au-delà de l’exposant critique α_2 = 4π .

This publication has 8 references indexed in Scilit: