Abstract
An approximate analysis and experimental data are presented for the transient mean wall temperature of a flat plate of appreciable thermal capacity, heated by a step in the heat generation rate and cooled on both sides by a steady, incompressible turbulent flow with a Prandtl number of unity. Theory and experiments are in agreement over a range of Reynolds numbers 5 × 105 ≤ ReL ≤ 2 × 106. The experimental mean heat transfer coefficient is observed to go through a dip to a minimum before reaching the steady state. This dip is found to be due to the conjunction of a large wall thermal capacity and a sufficiently high flow velocity.

This publication has 3 references indexed in Scilit: