Computing discrete logarithms in real quadratic congruence function fields of large genus

Abstract
The discrete logarithm problem in various finite abelian groups is the basis for some well known public key cryptosystems. Recently, real quadratic congruence function fields were used to construct a public key distribution system. The security of this public key system is based on the difficulty of a discrete logarithm problem in these fields. In this paper, we present a probabilistic algorithm with subexponential running time that computes such discrete logarithms in real quadratic congruence function fields of sufficiently large genus. This algorithm is a generalization of similar algorithms for real quadratic number fields.

This publication has 8 references indexed in Scilit: