Abstract
In a recent paper [5], general methods were described for the dissection of a square into a finite number n of unequal non-overlapping squares. In this note, examples of such perfect squares are given in which the sides and elements are relatively small integers; in particular, a dissection of a square into 24 different elements, which is believed to be the squaring of least order known at the present time.

This publication has 0 references indexed in Scilit: