T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6.
Open Access
- 1 May 1994
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 179 (5) , 1529-1537
- https://doi.org/10.1084/jem.179.5.1529
Abstract
This study investigates the molecular mechanisms underlying the induction of and protection from T cell activation-associated hepatic injury. When BALB/c mice were given a single intravenous injection of concanavalin A (Con A) (> or = 0.3 mg/mouse), they developed acute hepatic injury as assessed by a striking increase in plasma transaminase levels within 24 h. Histopathologically, only the liver was injured while moderate infiltration of T cells and polymorphonuclear cells occurred in the portal areas and around the central veins. The induction of hepatic injury was dependent on the existence as well as the activation of T cells, as untreated BALB/c nu/nu mice or BALB/c mice pretreated with a T cell-specific immunosuppressive drug, FK506, failed to develop disease. Significant increases in the levels of various cytokines in the plasma were detected before an increase in plasma transaminase levels. Within 1 h after Con A injection, tumor necrosis factor (TNF) levels peaked, this being followed by production of two other inflammatory cytokines, interleukin 6 (IL-6) and IL-1. Passive immunization with anti-TNF but not with anti-IL-1 or anti-IL-6 antibody, conferred significant levels of protection. Moreover, administration of rIL-6 before Con A injection resulted in an IL-6 dose-dependent protection. A single administration of a given dose of rIL-6 completely inhibited the release of transaminases, whereas the same regimen induced only 40-50% inhibition of TNF production. More than 80% inhibition of TNF production required four consecutive rIL-6 injections. These results indicate that: (a) TNFs are critical cytokines for inducing T cell activation-associated (Con A-induced) hepatitis; (b) the induction of hepatitis is almost completely controlled by rIL-6; and (c) rIL-6 exerts its protective effect through multiple mechanisms including the reduction of TNF production.Keywords
This publication has 39 references indexed in Scilit:
- Hbsag Retention Sensitizes the Hepatocyte to Injury by Physiological Concentrations of Interferon–γHepatology, 1992
- T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor.The Journal of Experimental Medicine, 1992
- Cytokine‐related syndrome following injection of anti‐CD3 monoclonal antibody: Further evidence for transient in vivo T cell activationEuropean Journal of Immunology, 1990
- Systemic Reaction to the Anti–T-Cell Monoclonal Antibody OKT3 in Relation to Serum Levels of Tumor Necrosis Factor and Interferon-αNew England Journal of Medicine, 1989
- The Biology of Cachectin/TNF -- A Primary Mediator of the Host ResponseAnnual Review of Immunology, 1989
- TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional PropertiesAnnual Review of Immunology, 1989
- Multiple actions of interleukin 6 within a cytokine networkImmunology Today, 1988
- Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes.The Journal of Experimental Medicine, 1987
- Regulation of insulin receptor kinase activity by insulin mimickers and an insulin antagonistBiochemical and Biophysical Research Communications, 1983
- Use of Monoclonal Antibodies to T-Cell Subsets for Immunologic Monitoring and Treatment in Recipients of Renal AllograftsNew England Journal of Medicine, 1981