Abstract
A three-dimensional model of the temperature and velocity distribution within any arbitrary-shaped ice mass is described. There is a mutual interaction in the model between the flow of the ice and its thermodynamics, since the flow law used in the model is temperature-dependent. Ice growth in three dimensions is governed by mass accumulation through precipitation, by mass depletion through loss of ice over the ocean, and by continuity requirements. Phase changes at the base of the ice are accounted for. The model has been applied in art exploratory manner to the Greenland ice sheet. Changes in the ice shape and temperature are presented and discussed. The basic shortcoming of the model as here presented appears primarily due to the coarse finite-difference mesh used, and to an unsophisticated approach to modelling the boundary ice.

This publication has 3 references indexed in Scilit: