Characteristics of Chymotrypsin Modified with Water-soluble Acylating Reagents and Its Peptide Synthesis Ability in Aqueous Organic Media

Abstract
Several kinds of modified chymotrypsin were prepared with water-soluble acylating reagents, and their characteristics after hydrolyzing with unmodified chymotrypsin in aqueous-N,N'-dimethylformamide (DMF) media were compared. It was found that chymotrypsin (Csin), of which a 20% amino group was modified with a benzyloxycarbonyl group (Z(20)Csin), had more favorable characteristics than unmodified chymotrypsin with regard to hydrolytic activity in an aqueous DMF media. We also investigated the Z(20)Csin-catalyzed peptide synthesis in two different solution systems. In the one-layer system containing water and DMF, Z(20)Csin catalyzed the peptide bond formation in a higher yield than that by unmodifide chymotrypsin and enabled a synthetic reaction in even an 80% (v/v) DMF media, in which the hydrolytic reaction could not be carried out. Z(20)Csin catalyzed the condensation between some N-acyl amino acids or peptide derivatives and amino acids in 90% ethylacetate, 90% hexane or 50% benzene. This latter method employs a two-layer system, and the modified enzyme may be able to reduce the number of synthetic steps when preparing acyl peptides.

This publication has 0 references indexed in Scilit: