Small Rises in Plasma Choline Reverse the Negative Arteriovenous Difference of Brain Choline
- 1 October 1990
- journal article
- research article
- Published by Wiley in Journal of Neurochemistry
- Vol. 55 (4) , 1231-1236
- https://doi.org/10.1111/j.1471-4159.1990.tb03129.x
Abstract
The concentrations of free choline in blood plasma from a peripheral artery and from the transverse sinus, in the CSF, and in total brain homogenate, have been measured in untreated rats and in rats after acute intraperitoneal administration of choline chloride. In untreated rats, the arteriovenous difference of brain choline was related to the arterial choline level. At low arterial blood levels ( 15 μM), the arteriovenous difference was positive, implying a marked net uptake of choline by the brain (3.1 nmol/g/min). The CSF choline concentration, which reflects changes in the extracellular choline concentration, also increased with increasing plasma levels and closely paralleled the gradually rising net uptake. Acute administration of 6, 20, or 60 mg of choline chloride/kg caused, in a dose-dependent manner, a sharp rise of the arterial blood levels and the CSF choline, and reversed the arteriovenous difference of choline to markedly positive values. The total free choline in the brain rose only initially and to a quantitatively negligible extent. Thus, the amount of choline taken up by the brain within 30 min was stored almost completely in a metabolized form and was sufficient to sustain the release of choline from the brain as long as the plasma level remained low. We conclude that the extracellular choline concentration of the brain closely parallels fluctuations in the plasma level of choline. Moreover, the often described release of choline from the brain as reflected by the negative arteriovenous difference of brain choline is not a steady-state phenomenon. Instead, the uptake of choline into and the release of choline from the brain seem to be in dynamic equilibrium that is closely related to the plasma choline level and, consequently, to nutritional choline uptake.Keywords
This publication has 28 references indexed in Scilit:
- Conversion of ethanolamine, monomethylethanolamine and dimethylethanolamine to choline-containing compounds by neurons in culture and by the rat brainBiochemical Journal, 1989
- The brain is protected from nutrient excessLife Sciences, 1987
- Muscarinic mobilization of choline in rat cerebral cortex does not involve alterations of blood-brain barrierBrain Research, 1985
- Choline and PAH transport across blood-CSF barriers: The effect of lithiumBrain Research, 1982
- Choline biosynthesis by a preparation enriched in synaptosomes from rat brainNature, 1981
- Relations between dietary choline or lecithin intake, serum choline levels, and various metabolic indicesMetabolism, 1978
- The arteriovenous difference of choline across the brain of manBrain Research, 1975
- The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeysBiochemical Journal, 1972
- Concentration and origin of choline in the rat brainNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1972
- The effect of anaesthesia on the acetylcholine content of brainThe Journal of Physiology, 1954