Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid
- 1 April 1981
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 146 (1) , 179-191
- https://doi.org/10.1128/jb.146.1.179-191.1981
Abstract
Pseudocumene (1,2,4-trimethylbenzene) and 3-ethyltoluene were found to serve as growth substrates for Pseudomonas putida (arvilla) mt-2, in addition to toluene, m-xylene, and p-xylene as previously described. Similar observations were made with several additional P. putida strains also capable of growth with toluene and the xylenes. Additional substrates which supported the growth of these organisms included 3,4-dimethylbenzyl alcohol, 3,4-dimethylbenzoate, and 3-ethylbenzoate. P. putida mt-2 cells grown either with toluene or pseudocumene rapidly oxidized toluene, pseudocumene, and 3-ethyltoluene as well as 3,4-dimethylbenzoate, 3-ethylbenzoate, 3,4-dimethylcatechol, and 3-ethylcatechol. Cell extracts from similarly grown P. putida mt-2 cells catalyzed a meta fission of 3,4-dimethylcatechol and 3-ethylcatechol to compounds having the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate and 2-hydroxy-6-ox-2,4-octadienoate, respectively. The further metabolism of these intermediates was shown to be independent of oxidized nicotinamide adenine dinucleotide (NAD+) and resulted in the formation of essentially equimolar amounts of pyruvate, indicating that each ring fission product was degraded via the hydrolytic branch of the meta fission pathway. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of a mutant, which when grown with succinate in the presence of pseudocumene or 3-ethyltoluene accumulated 3,4-dimethylcatechol or 3-ethylcatechol. Cells unable to utilize toluene, m-xylene, and p-xylene, obtained by growth in benzoate, also lost the ability to utilize pseudocumene and 3-ethyltoluene. The ability to utilize these substrates could be reacquired by incubation with a leucine auxotroph otherwise able to grow on all of the aromatic substrates.This publication has 49 references indexed in Scilit:
- Enzymic-like aromatic oxidations. Metal-catalyzed peracetic acid oxidation of phenol and catechol to cis,cis-muconic acidThe Journal of Organic Chemistry, 1976
- Transmissible plasmid coding for the degradation of benzoate andm-toluate inPseudomonas arvillamt-2Genetics Research, 1974
- Initial reactions in the oxidation of ethylbenzene by Pseudomonas putidaBiochemistry, 1973
- The Metabolism of Benzoate and Methylbenzoates via the meta‐Cleavage Pathway by Pseudomonas arvilla mt‐2European Journal of Biochemistry, 1972
- The meta Cleavage of Catechol by Azotobacter SpeciesEuropean Journal of Biochemistry, 1971
- Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid by a mutant strain of Alcaligenes eutrophusBiochemistry, 1971
- Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-1-methyl-4,6-cyclohexadiene from toluene by Pseudomonas putidaBiochemistry, 1970
- Metabolism of p- and m-xylene by species of PseudomonasCanadian Journal of Microbiology, 1968
- Degradation of the Benzene Nucleus by BacteriaNature, 1964
- Über α‐Halogenäther, XIII. Neue Verfahren zur Darstellung von PhenolaldehydenEuropean Journal of Inorganic Chemistry, 1963