Free Volume and Entropy in Condensed Systems II. Entropy of Vaporization in Liquids and the Pictorial Theory of the Liquid State
- 1 November 1945
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 13 (11) , 493-507
- https://doi.org/10.1063/1.1723984
Abstract
The results of the first paper of this series, and a generalization of a method due to Eyring, are used to obtain an expression for the free volume of a liquid, , and an equation for the entropy of vaporization. . Here , where γ measures the interference in the liquid with the internal motions (rotations, vibrations) of the molecule, and f, b, g, h, n are quantities which depend on the geometry of the liquid and the energetic and dynamic interaction of the molecules. The rule of Barclay and Butler, that the 25°C value of ΔS for various pure liquids has a rough linear relationship to the corresponding ΔH of vaporization, is shown to imply a general tendency for a liquid to have a smaller β the larger its ΔH of vaporization. In many cases this means a smaller γ, resulting from increased interference with rotation of the molecules in the liquid. Pitzer's perfect liquid has a value β = 16, sensibly independent of ΔH. This is taken to mean that in such a liquid as benzene or carbon tetrachloride (β≈6) the interference with free rotation is considerable. For CS2 there is evidence that the intermolecular force field differs from ``normal,'' and the difference in potential function between liquid metals and normal liquids shows up strongly. Accepting the value β = 16 found for the ideal liquid as a norm, it is proposed to call R ln (16/β) for any liquid the hypothetical entropy defect (HED) and interpret it as the amount by which the entropy of the liquid (referred to the same substance as a perfect gas) is less than that of the ideal liquid in the ``corresponding'' state.
Keywords
This publication has 14 references indexed in Scilit:
- Free Volume and Entropy in Condensed Systems I. General Principles. Fluctuation Entropy and Free Volume in Some Monatomic CrystalsThe Journal of Chemical Physics, 1945
- The Interatomic Potential Curve and the Equation of State for Argon*Journal of the American Chemical Society, 1941
- Corresponding States for Perfect LiquidsThe Journal of Chemical Physics, 1939
- Free Volumes and Free Angle Ratios of Molecules in LiquidsThe Journal of Chemical Physics, 1938
- The entropy of solutionTransactions of the Faraday Society, 1938
- Critical phenomena in gases - IProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1937
- The Theory of the Liquid StateThe Journal of Physical Chemistry, 1937
- Relations between the energy and entropy of solution and their significanceTransactions of the Faraday Society, 1937
- Further considerations on the thermodynamics of chemical equilibria and reaction ratesTransactions of the Faraday Society, 1936
- Zur kinetischen Theorie der einatomigen KörperAnnalen der Physik, 1903