Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation

Abstract
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in ∼50% of human sporadic cancers and in an inherited cancer predisposition (Li–Fraumeni syndrome). We have analyzed the status of the wild‐type p53 allele in tumors taken from p53‐deficient heterozygous (p53+/−) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild‐type p53. We present evidence that a high proportion of the tumors from the p53+/− mice retain an intact, functional, wild‐type p53 allele. Unlike p53+/− tumors which lose their wild‐type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following γ‐irradiation, activates p21WAF1/CIP1 and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild‐type p53), shows high levels of binding to oligonucleotides containing a wild‐type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.