Relativistic bound-state problem in the light-front Yukawa model

Abstract
We study the renormalization problem on the light front for the two-fermion bound state in the (3+1)-dimensional Yukawa model, working within the lowest-order Tamm-Dancoff approximation. In addition to traditional mass and wave-function renormalization, new types of counterterms are required. These are nonlocal and involve arbitrary functions of the longitudinal momenta. Their appearance is consistent with general power-counting arguments on the light front. We estimate the ‘‘arbitrary function’’ in two ways: (1) by using perturbation theory as a guide and (2) by considering the asymptotic large transverse momentum behavior of the kernel in the bound-state equations. The latter method, as it is currently implemented, is applicable only to the helicity-zero sector of the theory. Because of triviality, in the Yukawa model one must retain a finite cutoff Λ in order to have a nonvanishing renormalized coupling. For the range of renormalized couplings (and cutoffs) allowed by triviality, one finds that the perturbative counterterm does a good job in eliminating cutoff dependence in the low-energy spectrum (masses ≪Λ).