Protein Kinase Injection Reduces Voltage-Dependent Potassium Currents

Abstract
Intracellular iontophoretic injection of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase increased input resistance and decreased a delayed voltage-dependent K+ current of the type B photoreceptor in the nudibranch Hermissenda crassicornis to a greater extent than an early, rapidly inactivating K+ current (IA). This injection also enhanced the long-lasting depolarization of type B cells after a light step. These findings suggest the involvement of cyclic adenosine monophosphate-dependent phosphorylation in the differential regulation of photoreceptor K+ currents particularly during illumination. On the other hand, conditioning-induced changes in IA may also be regulated by a different type of phosphorylation (for example, Ca2+-dependent).