A Critical Role for Conserved Residues in the Cleft of HLA-A2 in Presentation of a Nonapeptide to T Cells

Abstract
The peptide binding cleft of the class I human histocompatibility antigen, HLA-A2, contains conserved amino acid residues clustered in the two ends of the cleft in pockets A and F as well as polymorphic residues. The function of two conserved tyrosines in the A pocket was investigated by mutating them to phenylalanines and of a conserved tyrosine and threonine in the F pocket by mutating them to phenylalanine and valine, respectively. Presentation of influenza virus peptides and of intact virus to cytolytic T lymphocytes (CTLs) was then examined. The magnitude of the reduction seen by the mutation of the two tyrosines in the A pocket suggests that hydrogen bonds involving them have a critical function in the binding of the NH2-terminal NH3+ of the peptide nonamer and possibly of all bound peptide nonamers. In contrast, the mutations in the F pocket had no effect on CTL recognition.