All-electrical switching and control mechanism for actomyosin-powered nanoactuators

Abstract
A fast all-electrical activation and control mechanism for biomolecular motor-powered nanoactuators has been developed. Rapid and reversible on–off control of actomyosin biomolecular motors was experimentally demonstrated using in vitro motility assays. The results show that the motility of the actin filaments can be cycled repeatedly by electrically controlled thermal activation in the temperature range from 10°C to 50°C without functional loss. The fast response of the filaments upon rapid temperature switching suggests that thermal activation provides an effective method for turning actomyosin-powered nanoactuators on and off.