Field Induced Reduction of the Low Temperature Superfluid Density in YBa2Cu3O6.95

Abstract
A novel high magnetic field (8 T) spectrometer for muon spin rotation has been used to measure the temperature dependence of the in-plane magnetic penetration depth in YBa2Cu3O6.95. At low H and low T, the penetration depth exhibits the characteristic linear T dependence associated with the energy gap of a d_x^2-y^2-wave superconductor. However, at higher fields the penetration depth is essentially temperature independent at low T. We discuss possible interpretations of this surprising new feature in the low-energy excitation spectrum.

This publication has 0 references indexed in Scilit: