• 1 May 1977
    • journal article
    • Vol. 36  (6) , 1833-9
Abstract
In Halobacterium halobium, proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane. Energy storage in this form is only transient. Cellular energy transducers competing with proton leaks stabilize this free energy as high energy phosphate bonds, electrochemical potential of other ions, and chemical potential of amino acids and possibly other chemical species. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. Dominant is the proton inflow coupled to the synthesis of ATP, which has been kinetically resolved. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of photophosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark preexisting potential of about 130 mV only by a small amount (20-30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, indicating that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented. A salient feature of this model is a sudden relaxation of the protonmotive force by a proton inflow through the ATPase when the preexisting protonmotive force is increased by light or respiration and reaches a critical value. The trigger could be either the proton-motive force, the pH gradient, or possibly the internal pH.