Abstract
In living matter, electronic excitations may have a collective character which is reviewed here in simple physical terms. In liquids and ordered solids the collective excitations appear as plasmons or excitons. Plasmons are delocalized electronic perturbations of a huge number of oscillating electrons decaying very quickly into localized electronic perturbations, mainly low-energy ionizations. Excitons are very light, moving quantum quasi-particles carrying energy, charge and information in structured biological systems. In deformable soft structures collective excitations appear as solitons behaving as rather massive quasi-particles of combined quantum and classical character. Solitons are relatively stable micro-objects able to transfer energy, charge, mass, and biological information along such biological structures as (chains of) macromolecules, fibres, membranes and surfaces. Some photobiological and radiation biological consequences of collective electronic excitations are suggested.