A new class of codes meeting the Griesmer bound

Abstract
An infinite sequence ofk-dimensional binary linear block codes is constructed with parametersn=2^{k}+2^{k-2}-15,d=2^{k-1}+2^{k-3}-8,k geq 7. Fork geq 8these codes are unique, while there are five nonisomorphic codes fork=7. By shortening these codes in an appropriate way, one finds codes meeting the Griesmer bound for2^{k-1}+2^{k-3}-15 leq d leq 2^{k-1}+2^{k-3}-8; k geq 7.

This publication has 3 references indexed in Scilit: