Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast
Open Access
- 15 November 1997
- journal article
- Published by Cold Spring Harbor Laboratory in Genes & Development
- Vol. 11 (22) , 3046-3060
- https://doi.org/10.1101/gad.11.22.3046
Abstract
Cyclin-dependent kinase inhibitors (CKIs) play key roles in controlling the eukaryotic cell cycle by coordinating cell proliferation and differentiation. Understanding the roles of CKIs requires knowledge of how they are regulated both through the cell cycle and in response to extracellular signals. Here we show that the yeast CKI, Far1p, is controlled by ubiquitin-dependent proteolysis. Wild-type Far1p was stable only in the G1 phase of the cell cycle. Biochemical and genetic evidence indicate that its degradation required the components of the G1–S ubiquitination system, Cdc34p, Cdc4p, Cdc53p, and Skp1p. We isolated a mutant form of Far1p (Far1p-22) that was able to induce cell cycle arrest in the absence of α-factor. Cells that overexpress Far1-22p arrested in G1 as large unbudded cells with low Cdc28p–Clnp kinase activity. Wild-type Far1p, but not Far1-22p, was readily ubiquitinated in vitro in aCDC34- and CDC4-dependent manner. Far1-22p harbors a single amino acid change, from serine to proline at residue 87, which alters phosphorylation by Cdc28p–Cln2p in vitro. Our results show that Far1p is regulated by ubiquitin-mediated proteolysis and suggest that phosphorylation of Far1p by the Cdc28p–Clnp kinase is part of the recognition signal for ubiquitination.Keywords
This publication has 75 references indexed in Scilit:
- Cancer Cell CyclesScience, 1996
- Activation of the Budding Yeast Spindle Assembly Checkpoint Without Mitotic Spindle DisruptionScience, 1996
- Cdc53 Targets Phosphorylated G1 Cyclins for Degradation by the Ubiquitin Proteolytic PathwayCell, 1996
- Linkage of Replication to Start by the Cdk Inhibitor Sic1Science, 1996
- Rapid Degradation of the G 1 Cyclin Cln2 Induced by CDK-Dependent PhosphorylationScience, 1996
- Starting the cell cycle: what's the point?Current Opinion in Cell Biology, 1995
- A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extractsCell, 1994
- Direct Inhibition of the Yeast Cyclin-Dependent Kinase Cdc28-Cln by Far1Science, 1994
- Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2Cell, 1990
- Five SWI genes are required for expression of the HO gene in yeastJournal of Molecular Biology, 1984