Sensor validation for power plants using adaptive backpropagation neural network

Abstract
Signal validation and process monitoring problems in many cases require the prediction of one or more process variables in a system. The feasibility of using neural networks to characterize one variable as a function of other related variables is studied. The backpropagation network (BPN) is used to develop models of signals from both a commercial power plant and the Experimental Breeder Reactor-II (EBR-II). Several innovations are made in the algorithm, the most significant of which is the progressive adjustment of the sigmoidal threshold function and weight updating terms

This publication has 0 references indexed in Scilit: