The interaction of the retina cell surface N-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhesion.
Open Access
- 1 June 1995
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 129 (5) , 1391-1401
- https://doi.org/10.1083/jcb.129.5.1391
Abstract
We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N-acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.Keywords
This publication has 55 references indexed in Scilit:
- Novel neurite growth-inhibitory properties of an astrocyte proteoglycanJournal of Chemical Neuroanatomy, 1993
- The retina cell-surface N-acetylgalactosaminylphosphotransferase is anchored by a glycophosphatidylinositolBiochemistry, 1993
- Cloning of the Human α-Catenin cDNA and Its Aberrant mRNA in a Human Cancer Cell LineBiochemical and Biophysical Research Communications, 1993
- Nervous tissue proteoglycansCellular and Molecular Life Sciences, 1993
- Immunodominant T Cell Epitope from Signal SequenceScience, 1992
- Identification of a developmentally regulated keratan sulfate proteoglycan that inhibits cell adhesion and neurite outgrowthNeuron, 1991
- Antibodies to the retina N‐acetylgalactosaminylphosphotransferase inhibit neurite outgrowthJournal of Neuroscience Research, 1991
- Antibodies to the retina N-acetylgalactosaminylphosphotransferase modulate N-cadherin-mediated adhesion and uncouple the N-cadherin transferase complex from the actin-containing cytoskeleton.The Journal of cell biology, 1991
- Functional mapping of cytotactin: proteolytic fragments active in cell-substrate adhesion.The Journal of cell biology, 1988
- Two distinct adhesion mechanisms in embryonic neural retina cellsDevelopmental Biology, 1981