Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis

Abstract
The relationship between numerical advantage and competitive ability is a fundamental component in contests between groups of social animals. An individual's ability to correctly assess the numerical state of its group is of vital importance. In addition to numerical dominance, the group's fighting ability also plays an important role in competitive interactions. By staging experimental fights between two Formica ant species, I show that Formica xerophila are able to assess their own group's strength prior to any competitive encounter. Ants that perceive themselves as part of a large group act more aggressively toward a competitor than ants that perceive themselves as isolated individuals. This increase in aggression improves F. xerophila's competitive ability. Furthermore, the number of individuals in a contest was found to affect competitive ability. In contests with equal number of competitors, groups of F. xerophila were more successful than individual F. xerophila. Contrary to previous predictions using Lanchester's laws of fighting, F. xerophila's ability to kill competitors increased nonlinearly with group size. This nonlinearity was due to the collective fighting strategy of an F. xerophila group isolating and engaging a single Formica integroides competitors.