A Three-Dimensional Mathematical Simulation of Pedestrian-Vehicle Impact With Experimental Verification

Abstract
In an urban environment, pedestrians account for a disproportionately high percentage of traffic fatalities in comparison with the percentage of accidents in which they are involved, according to the U. S. Department of Transportation. Rural statistics are equally bad. The problem of minimizing injuries to pedestrians when struck by a vehicle involves a large number of variables, such as the type and size of the vehicle, its speed at impact, the effects of braking and vehicle pitch, the geometry and stiffness of the vehicle exterior, and the size and age of the pedestrian. Obviously, it is impractical to study the effect of all of the variables experimentally. An alternate approach is the use of a validated mathematical model to simulate this impact event. This paper deals with the comparison of the results of a three-dimensional gross motion simulator with experimental data acquired under controlled laboratory conditions.

This publication has 0 references indexed in Scilit: