Fast Inhibition of Inwardly Rectifying K+ Channels by Multiple Neurotransmitter Receptors in Oligodendroglia

Abstract
An essential function of myelinating oligodendroglia in the mammalian central nervous system is the regulation of extracellular potassium levels by means of a prominent inwardly rectifying K+ current. Cardiac and neuronal K+ inward rectifiers are either activated by hyperpolarizing voltages or controlled by neurotransmitters through the action of receptor-activated G proteins. Neuromodulation of inward rectifiers has not previously been considered as a way to regulate oligodendrocyte function. Here we report the expression of serotonin, somatostatin and muscarinic acetylcholine G protein-coupled receptors in rat brain oligodendrocytes. Activation of these receptors leads to pertussis toxin-sensitive inhibition of inwardly rectifying K+ channels within < 1 s. By contrast, in the heart and in neurons, similar pathways activate an inwardly rectifying conductance. Thus, transmitter-mediated blockade of inward rectifiers appears to be an oligodendrocyte-specific variation of a common motif for convergent signalling pathways. In vivo, expression of this mechanism, which may be dependent on neuron-glia signalling, may have a regulatory role in K+ homeostasis during neuron activity in the central nervous system.