Estimating Corn Growth, Yield, and Grain Moisture from Air Growing Degree Days and Residue Cover1

Abstract
Low spring soil temperatures commonly restrict the early growth of corn (Zea mays L.) in the northern Corn Belt. A quantitative assessment of the effects of tillage and residue management practices on soil temperature would improve tillage recommendations in this region. The effect of tillage and surface residue cover on seedbed soil temperatures and subsequent corn growth were studied at four sites in the northern Corn Belt that differed widely in soil characteristics including drainage, texture, slope, and organic matter content. Tillage systems included no‐tillage, chisel plow, moldboard plow, paraplow, ridge plant, and wheeltrack plant. A wide range of surface residue cover was imposed on each system at three sites. Corn emergence and leaf number to the six‐leaf stage were closely related to percent in‐row cover and air temperature growing degree days (air GDD) through their mutual relationship to soil temperature growing degree days (soil GDD) at all sites. For a given site and year, percent in‐row cover following planting was the major factor affecting corn growth rate until the six‐leaf stage. Corn planted under high percent residue cover required more time and consequently more air GDD to reach the six‐leaf stage. This added time represents a growth delay that can be expressed as the additional air GDD required to reach the six‐leaf stage. Such delays were related to increased grain moisture and decreased corn grain yield when net cumulative air GDD were less than the threshold value of 1319 and water stress was minimal. In‐row residue cover due to tillage and previous crop can have a major impact on the growth and development of corn in the northern Corn Belt. These factors should be considered in selecting tillage systems in this region.