Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants.
- 9 May 1995
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 92 (10) , 4106-4113
- https://doi.org/10.1073/pnas.92.10.4106
Abstract
Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.Keywords
This publication has 25 references indexed in Scilit:
- Systemic induction of a potato pin2 promoter by wounding, methyl iasmonate, and abscisic acid in transgenic rice plantsPlant Molecular Biology, 1993
- Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.Proceedings of the National Academy of Sciences, 1992
- Abscisic Acid Mediates Wound Induction but Not Developmental-Specific Expression of the Proteinase Inhibitor II Gene Family.Plant Cell, 1991
- Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid.Plant Cell, 1990
- Gene expression in response to abscisic acid and osmotic stress.Plant Cell, 1990
- Auxin Levels Regulate the Expression of a Wound-Inducible Proteinase Inhibitor II-Chloramphenicol Acetyl Transferase Gene Fusion in Vitro and in VivoPlant Physiology, 1989
- Molecular cloning, nucleotide sequence, and abscisic acid induction of a suberization-associated highly anionic peroxidaseMolecular Genetics and Genomics, 1989
- Age Changes in Lumbar Zygapophyseal JointsSpine, 1986
- ARACHIDONIC ACID METABOLISMAnnual Review of Biochemistry, 1986
- The biosynthesis of jasmonic acid: A physiological role for plant lipoxygenaseBiochemical and Biophysical Research Communications, 1983