On Almost Everywhere Convergence of Bochner-Riesz Means in Higher Dimensions
Open Access
- 1 September 1985
- journal article
- Published by JSTOR in Proceedings of the American Mathematical Society
- Vol. 95 (1) , 16-20
- https://doi.org/10.2307/2045566
Abstract
In <!-- MATH ${{\mathbf{R}}^n}$ --> define <!-- MATH $({T_{\lambda ,r}}f)(\xi ) = \hat f(\xi )(1 - \left| {{r^{ - 1}}{\xi ^2}} \right|)_ + ^\lambda$ --> . If , <!-- MATH $\lambda > \tfrac{1}{2}(n - 1)/(n + 1)$ --> \tfrac{1}{2}(n - 1)/(n + 1)$"> and <!-- MATH $2 \leq p < 2n/(n - 1 - 2\lambda )$ --> <img width="219" height="41" align="MIDDLE" border="0" src="images/img7.gif" alt="$ 2 \leq p < 2n/(n - 1 - 2\lambda )$">, then <!-- MATH ${\lim _{r \to \infty }}{T_{\lambda ,r}}f(x) = f(x)$ --> a.e. for all <!-- MATH $f \in {L^p}({{\mathbf{R}}^n})$ --> .
Keywords
This publication has 8 references indexed in Scilit:
- A Weighted Inequality for the Maximal Bochner-Riesz Operator on R 2Transactions of the American Mathematical Society, 1985
- Weighted norm inequalities and vector valued inequalitiesPublished by Springer Nature ,1982
- Restriction theorems for the Fourier transformProceedings of Symposia in Pure Mathematics, 1979
- A note on spherical summation multipliersIsrael Journal of Mathematics, 1973
- Introduction to Fourier Analysis on Euclidean Spaces (PMS-32)Published by Walter de Gruyter GmbH ,1972
- Oscillatory integrals and multiplier problem for the discStudia Mathematica, 1972
- Inequalities for strongly singular convolution operatorsActa Mathematica, 1970
- ON THE MEAN INVERSION OF FOURIER AND HANKEL TRANSFORMSProceedings of the National Academy of Sciences, 1954