The nonlinear growth of surface-tension-driven instabilities of a thin annular film
- 1 December 1991
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 233, 141-156
- https://doi.org/10.1017/s0022112091000423
Abstract
The stability and initial growth rate of disturbances on an annular film lining a cylindrical tube have been the focus of several previous works. The further development of thsse disturbances as they grow to form stable unduloids or liquid bridges is investigated by means of a thin-film integral model. The model is compared both with perturbation theories for early times, and a numerical solution of the exact equations (NEKTON) for later times. The thin-film model gave results that were in good agreement with solutions of the exact equations. The results show that linear perturbation theory can be used to give good estimates of the times for unduloid and liquid bridge formation. The success of the model derives from the dominant influence of narrow draining regions that feed into the growing unduloid, and these regions remain essentially one-dimensional throughout the growth of the instability.The model is used to analyse the evolution of the liquid layer lining the small airways of the lung during a single breath. The timescales for formation of unduloids and liquid bridges are found to be short enough for the liquid layer to be in a virtually quasi-equilibrium state throughout the breathing cycle. This conclusion is only tentative, however, because the model assumes that the surface tension of the airway liquid lining does not change with changes in interfacial area despite the known presence of pulmonary surfactant.Keywords
This publication has 16 references indexed in Scilit:
- A spectral element method for fluid dynamics: Laminar flow in a channel expansionPublished by Elsevier ,2004
- A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flowsComputer Methods in Applied Mechanics and Engineering, 1990
- Profile equations for film flows at moderate Reynolds numbersAIChE Journal, 1989
- Is airway closure caused by a liquid film instability?Respiration Physiology, 1989
- An extended evolution equation for liquid film breakup in cylindrical capillariesChemical Engineering Science, 1988
- Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipeJournal of Fluid Mechanics, 1983
- Drop Formation in a Circular Liquid JetAnnual Review of Fluid Mechanics, 1979
- Flow of a falling film into a poolAIChE Journal, 1978
- The shape of a thread of liquid undergoing break-upJournal of Colloid Science, 1964
- The instability of an annular thread of fluidJournal of Fluid Mechanics, 1962