Elicitor Induction of Cytochrome P-450 Monooxygenases in Cell Suspension Cultures of Chickpea (Cicer arietinum L.) and Their Involvement in Pterocarpan Phytoalexin Biosynthesis

Abstract
A yeast glucan elicitor causes the accumulation of the pterocarpan phytoalexins medicarpin and maackiain in chickpea (Cicer arietinum) cell suspension cultures established from seeds. A cell culture line from a chickpea cultivar resistant against its main fungal pathogen Ascochyta rabiei accumulates large amounts (944 nm ol/g fr. wt.) whereas a cell culture line from a susceptible cultivar accumulates only low amounts (38 nm ol/g fr. wt.) of the phytoalexins. This is consistent with differential accumulation of pterocarpan phytoalexins in intact plants [1], The first reactions in the pterocarpan-specific branch of biosynthesis are hydroxylation of the isoflavone intermediate form ononetin in position 2′ or 3′, catalyzed by microsomal cytochrome P-450 monooxygenases. Upon elicitation form ononetin 2′-hydroxylase undergoes a strong transient induction in the cell suspension culture of the resistant cultivar, whereas in the cell culture from the susceptible cultivar it is only slightly induced. In both cell suspension cul­tures the induction of cinnamic acid 4-hydroxylase and of form ononetin 3′-hydroxylase does not show a clear correlation with phytoalexin accumulation. Experiments with different elici­tor concentrations confirm that formononetin 2′-hydroxylase is much more induced in cell cul­tures from the resistant cultivar than from the susceptible one. It is concluded that the massive difference in phytoalexin accumulation between cell suspension cultures from the resistant and susceptible cultivar is determined mainly by the differential induction of form ononetin 2′-hydroxylase activity.

This publication has 0 references indexed in Scilit: