Abstract
The exact distributions of gravity stresses are obtained within slopes of finite height inclined at various angles, −β (β = π/2, π/3, π/4, π/6, and π/8), to the horizontal. The solutions are obtained by application of the theory of a complex variable. In homogeneous, isotropic, and linearly elastic slopes under plane strain conditions, the gravity stresses are independent of Young's modulus and are a function of (a) the coordinates, (b) the height, (c) the inclination angle, (d) Poisson's ratio or the coefficient of earth pressure at rest, and (e) the volumetric weight. Conformal applications that transform the planes of the various slopes studied onto the upper half-plane are analytically obtained. These solutions are also represented graphically.

This publication has 0 references indexed in Scilit: