Terminally Differentiated Human Neurons Survive and Integrate Following Transplantation into the Traumatically Injured Rat Brain
- 1 May 1999
- journal article
- research article
- Published by Mary Ann Liebert Inc in Journal of Neurotrauma
- Vol. 16 (5) , 403-414
- https://doi.org/10.1089/neu.1999.16.403
Abstract
The present study evaluated the survival and integration of human postmitotic neurons (hNT) following transplantation into the traumatically injured rodent brain. Anesthetized male Sprague-Dawley rats (n = 47) were subjected to lateral fluid percussion brain injury of moderate severity (2.4–2.6 atm). Sham animals (n = 28) were surgically prepared, but did not receive brain injury. At 24 h following injury or sham surgery, the rats were re-anesthetized and ∼100,000 hNT cells (freshly cultured or previously frozen) or vehicle were stereotactically injected into the ipsilateral cortex. Animals were examined for neuromotor function at 48 h, 7 days, and 14 days posttransplantation using a standard battery of motor tests. Animals were sacrificed at 2 weeks postinjury and viability of hNT grafts was assessed by Nissl staining and MOC-1 immunohistochemistry, which recognizes human neural cell adhesion molecules (NCAM) expressed on hNT cells. Transplanted hNT grafts remained viable in 83% of brain-injured animals at 2 weeks following transplantation of either fresh or frozen hNT cells. Glial fibrillary acidic protein (GFAP) immunohistochemistry revealed a marked increase in the number of reactive astrocytes following brain injury in both vehicle and hNT implanted animals. These reactive astrocytes appeared not to impede grafted cells from sending projections into host tissue. Despite the survival of transplanted cells in the traumatically injured brain, hNT cells had no significant effect on posttraumatic neurologic motor function during the acute posttraumatic period. Since hNT cells are transfectable, prolonged survival of these transplanted cells in the posttraumatic milieu suggests that grafted hNT cells may be a suitable means for delivery of therapeutic, exogenous proteins into the CNS for treatment of traumatic brain injury.Keywords
This publication has 66 references indexed in Scilit:
- Inflammatory Cytokines Interact to Modulate Extracellular Matrix and Astrocytic Support of Neurite OutgrowthExperimental Neurology, 1997
- Immortalized neural progenitor cells for CNS gene transfer and repairTrends in Neurosciences, 1997
- Mechanisms of astrocyte-directed neurite guidanceCell and tissue research, 1997
- Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the ratJournal of Neurosurgery, 1996
- Transplanted human neurons derived from a teratocarcinoma cell line (NTera‐2) mature, integrate, and survive for over 1 year in the nude mouse brainJournal of Comparative Neurology, 1995
- Early Microvascular and Neuronal Consequences of Traumatic Brain Injury: A Light and Electron Microscopic Study in RatsJournal of Neurotrauma, 1994
- Better cells for brain repairNature, 1993
- Intracerebral grafting: A tool for the neurobiologistNeuron, 1991
- Neuronal changes in fetal cortex transplanted to ischemic adult rat cortexJournal of Neurosurgery, 1988