Fiber sensor design for turbine engines

Abstract
Determination of blade temperatures in the high-speed and turbulent environment of a turbine engine is difficult using standard pyrometry techniques because of the presence of high- temperature flame and the reflective nature of the inspection surfaces. A technique utilizing thermographic phosphor compounds bonded to engine vanes and turbine blades is presented that mitigates the negative effects of blackbody radiation while potentially allowing near real- time acquisition of blade temperature information. Specialized single and dual fiber-optic probes were designed to interrogate both fixed and rotating surfaces by delivering ultraviolet light from a quadrupled Nd:YAG (266 nm) laser to phosphor coatings consisting of Y2O3:Eu, YVO4, and YAG:Tb ceramic compounds. This technique utilizes the temperature- dependent fluorescent emission of a ceramic phosphor coating to discern the temperature of the interrogated surface. By using these methods, surface temperature measurements to 1200 degree(s)C are achievable in the combustion environment.

This publication has 0 references indexed in Scilit: