AN AUTOMATIC LEAST‐SQUARES MULTIMODEL METHOD FOR MAGNETIC INTERPRETATION

Abstract
The magnetic anomalies caused by such diverse model shapes as the finite strike length thick dike, the vertical prism, thes loping step, the parallelepiped body, etc., may be obtained through an appropriate numerical integration of the expression for the magnetic effect produced by a finite thin plate. Using models generated in this manner, an automatic computer method has been developed at the Geological Survey of Canada for the interpretation of magnetic data. Because the magnetic anomalies produced by the various model shapes are nonlinear in parameters of shape and position, it is necessary to use an iterative procedure to obtain the values for the various model parameters which yield a least‐squares best‐fit anomaly curve to a set of discrete observed data. The interpretation method described in this paper uses the Powell algorithm for this purpose. The procedure can sometimes be made more efficient using a Marquardt modification to the Powell algorithm. Examples of the use of the method are presented for an elongated anomaly in the Moose River basin of the Hudson Bay lowlands in northern Ontario, and for an areally large elliptical anomaly in the Sverdrup basin of the Canadian Arctic Islands.