The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents
- 1 December 1969
- journal article
- Published by Springer Nature in The Journal of Membrane Biology
- Vol. 1 (1) , 294-345
- https://doi.org/10.1007/bf01869787
Abstract
In order to clarify the mechanism by which neutral molecules such as the macrotetralide actin antibiotics make phospholipid bilayer membranes selectively permeable to cations, we have studied, both theoretically and experimentally, the extraction by these antibiotics of cations from aqueous solutions into organic solvents. The experiments involve merely shaking an organic solvent phase containing the antibiotic with aqueous solutions containing various cationic salts of a lipid-soluble colored anion. The intensity of color of the organic phase is then measured spectrophotometrically to indicate how much salt has been extracted. From such measurements of the equilibrium extraction of picrate and dinitrophenolate salts of Li, Na, K, Rb, Cs, and NH4 into n-hexane, dichloromethane, and hexane-dichloromethane mixtures, we have verified that the chemical reactions are as simple as previously postulated, at least for nonactin, monactin, dinactin, and trinactin. The equilibrium constant for the extraction of each cation by a given macrotetralide actin antibiotic was also found to be measurable with sufficient precision for meaningful differences among the members of this series of antibiotics to be detected. It is noteworthy that the ratios of selectivities among the various cations were discovered to be characteristic of a given antibiotic and to be completely independent of the solvent used. This finding and others reported here indicate that the size and shape of the complex formed between the macrotetralide and a given cation is the same, regardless of the species of cation bound. For such “isosteric” complexes, notable simplifications of the theory become possible which enable us to predict not only the electrical properties of a membrane made of the same solvent and having the thinness of the phospholipid bilayer but also, and more importantly, the electrical properties of the phospholipid bilayer membrane itself. These predictions will be compared with experimental data for phospholipid bilayer membranes in the accompanying paper.Keywords
This publication has 8 references indexed in Scilit:
- A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranesThe Journal of Membrane Biology, 1969
- The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranesThe Journal of Membrane Biology, 1969
- Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions.1968
- Ionic complexes of macrocyclic polyethers.1968
- Structure of the K+ complex with nonactin, a macrotetrolide antibiotic possessing highly specific K+ transport propertiesJournal of Molecular Biology, 1967
- Antibiotic-mediated transport of alkali ions across lipid barriers.Proceedings of the National Academy of Sciences, 1967
- Komplexe von Nonactin und Monactin mit Natrium‐, Kalium‐und Ammonium‐IonenHelvetica Chimica Acta, 1967
- Cation Selective Glass Electrodes and their Mode of OperationBiophysical Journal, 1962